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On shear flow past flat plates 

By RICHARD M. MARK 
Lockheed Research Laboratory, Palo Alto, California 

(Received 10 January 1962 and in revised form 28 May 1962) 

The boundary layer on a semi-infinite flat plate placed in a two-dimensional, 
unbounded, steady, constant shear flow of a viscous incompressible fluid is 
examined on the basis of the constant-pressure assumption. An asymptotic 
solution is obtained first for large vorticity numbers. Then an approximate 
solution is found for arbitrary vorticity numbers that gives good agreement with 
exact calculations for the extreme cases of small and large vorticity numbers. The 
present calculations are limited to the boundary layer on the top side of the plate 
only. 

~~ ~ ~~ 

1. Introduction 
A problem that has recently stimulated much interest concerns the determina- 

tion of the flow field about a body that is immersed in the stream of a viscous 
fluid that contains vorticity generated by some external mechanism other than 
the body. To study this problem in its essential features, Li (1955) introduced the 
idealized model of the two-dimensional, unbounded, steady, constant shear flow 
of an incompressible viscous fluid past an infinitesimally thin, semi-infinite flat 
plate that is aligned parallel to the oncoming flow. This oncoming flow field is 
essentially the superposition, at constant pressure P, of a uniform flow with 
constant velocity U upon a shear flow with a linear velocity distribution wy, 
where w is the positive constant external vorticity and (u, v) are components of 
velocity in a rectangular (z, y) system. The plate is placed on y = 0,  x 2 0. 

Despite the simplicity of the oncoming flow pattern and body geometry (the 
flow in the wake of an otherwise fmite body has been eliminated), this non-linear 
problem is still extremely difficult to solve without the introduction of reasonable 
simplifying assumptions. The common approach in the past has been to adopt, 
with suitable modifications, the approximations of classical boundary-layer 
theory as the starting-point of an heuristic investigation. As a result, two different 
models-based on different ' suitable modifications '-have been advanced to 
predict the flow behaviour. They will be discussed below. 

According to the classical theory of Prandtl-Blasius (see Prandtl & Tietjens 
1934) for the uniform flow past a semi-infinite flat plate, two basic assumptions 
were made: (i) the existence of a thin boundary layer on the plate where inertia 
and viscous forces are of the same order of magnitude, and (ii) this thin boundary 
layer cannot significantly disturb the mainstream pressure field to the first 
approximation (or, it represents only a secondary effect on the pressure a t  most). 
The theoretical justification for these physical assumptions has been subsequently 
established a posteriori by examining the flow due to displacement thickness. 
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A somewhat more convincing, but still indirect, justification has been given by 
the good agreement between the predicted velocity profile across the boundary 
layer and the measured one for plates of finite length (this good agreement also 
indicates that the wake flow has a higher-order effect on the plate proper). At any 
rate, there seems to be no doubt that the basic assumptions of Prandtl-Blasius 
are good ones for a plate that is semi-infinite in length, a t  least for the initial 
approximation. Thus, the pressure distribution along the surface of the plate is 
given by the inviscid distribution as if the boundary layer was absent, and, by 
virtue of the constancy of pressure across the thin boundary layer, this inviscid 
pressure distribution is also effective at  the outer edge of the boundary layer (the 
outer edge of the boundary layer is interpreted here in the asymptotic sense as 
where the viscous diffusion term normal to the plate in the governing equations 
becomes exponentially small to within a specified amount). Then, by virtue of 
Bernoulli’s equation, the corresponding velocity distribution at the outer edge of 
the boundary layer is automatically determined and, moreover, establishes the 
asymptotic boundary condition for the velocity for the boundary -layer problem. 
In retrospect, we could have started with the basic assumption that the velocity 
distribution at the outer edge of the boundary layer approaches asymptotically 
the inviscid velocity distribution at  the wall, and then obtain the corresponding 
pressure distribution a t  the outer edge of, and hence across, the boundary layer 
by means of Bernoulli’s equation. However, this second argument is apparently 
less clear physically. 

We cannot expect this fortuitous circumstance for the case of a uniform on- 
coming flow to occur when the oncoming flow is rotational and where the total 
pressure changes from streamline to streamline. For, if the second argument is 
followed, we would then have u + U as the asymptotic velocity condition a t  the 
outer edge of the boundary layer since u = U is precisely the inviscid velocity 
evaluated at  the wall for all finite values of w.  But this will mean that u --f U is a 
good first approximation to the asymptotic boundary condition for the velocity 
for all finite w ,  which is certainly not true far downstream where the rotational 
velocity component wy of the mainstream eventually dominates the uniform flow 
component U if the boundary layer grows in thickness with distance downstream 
from the leading edge. The second argument may thus be eliminated as being 
unsatisfactory. On the other hand, if the boundary layer is thin, the assumptions 
of Prandtl-Blasius have a definite physical appeal and would constitute a reason- 
able starting-point for an investigation in the rotational oncoming flow case. 

Thus Glauert (1957) begins by assuming the applicability of the Prandtl- 
Blasius assumptions (as listed above) when the mainstream contains vorticity 
(see also Li 1955). He then proceeds to deduce that the outward displacement of 
the external streamlines by the boundary layer causes a reduction in the tan- 
gential velocity at the outer edge of the boundary layer when compared to the 
undisturbed velocity a t  the same geometrical point in the flow, or, asymptotically, 

u + U + w ( y - & * )  as y-+co, (1 .1)  

where 6” is the displacement thickness of the boundary layer. A different 
assumption was introduced by Li (1956) to the effect that the tangential velocity 
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a t  the outer edge of the boundary layer approaches asymptotically the undis- 
turbed velocity near the wall, or 

u + U + w y  as y-too. (1.2) 

This assumption then leads automatically to the result that a favourable pressure 
gradient is induced along the plate that is proportional to the product of w and the 
normal displacement velocity at the outer edge of the boundary layer. 

Murray (1961) was the first to attempt a resolution of the conflicting claims by 
examining the respective flows due to displacement thickness (or, mathematically, 
by matching the boundary layer flow to an outer flow). His work appears to 
substantiate the assumption of Li (1956). However, further reflexion reveals that 
his conclusion has been derived prematurely. Like that of Li (1955, 1956) and 
Glauert (1957), Murray’s analysis for the boundary layer (which he carries out in 
parabolic co-ordinates) is essentially a perturbation analysis about the Blasius 
solution for small values of the vorticity number < = w(vx/U3)4, where v is the 
kinematic viscosity. Since 6 contains the factor ,/x in the numerator, such a 
perturbation analysis with 6 as the expansion parameter would not be uniformly 
valid far downstream along the plate (x+oo). Hence the analysis must be 
restricted to the region 

XL 6 x 6 xu, 

where the lower bound xL must be much greater than v /U in order for the 
boundary-layer approximations to apply, and the upper bound xu must be much 
smaller than U3/vw2 in order for the perturbation analysis to be valid. This means 
that the flow due to displacement thickness as determined by Murray is based on 
the information from this limited region only. Such an analysis is incomplete 
from the physical standpoint because a larger disturbance can be created by the 
displacement thickness downstream of the region (1.3) than that predicted by 
Murray, especially if the boundary layer continues to grow in thickness. 

An analysis for the boundary layer downstream of the region (1.3), based on 
assumption (1.2), has been supplied by Ting (1960). Ting gives an asymptotic 
analysis for large values of the vorticity number? by perturbing about a Couette- 
type flow u, = wy, v, = 0 andp, = P (constant). He points out that the deviations 
from this basic flow need not be small, as may be seen by writing his expansion for 
the pressure to the first two terms as 

(1.3) 

p = P-ppu(vxw2)+, 

where p is a constant and p is the density. The second term, being the induced 
pressure due to the presence of the boundary layer, becomes larger than the 
primary pressure P when x --f 00. This limit is consistent with 6 -t co with fixed 
non-zero U ,  v and w .  This means that the superposition of a uniform flow of 

t The small vorticity number case may be interpreted qualitatively as occurring when 
6 < U / w ,  where S is the boundary-layer thickness; since this occurs when the uniform 
flow dominates the rotational flow component at  y = S, S = O ( J v x / U ) ,  so that WS < U 
implies 6 < 1. The large vorticity number case may be interpreted as occurring when 
6 9 U / o  or when the rotational flow dominates the uniform flow component a t  y = 6. 
In  this region, the condition that the inertia and viscous forces are of the same order of 
magnitude gives 6 = O(vx/w)*, so that WS > U implies t* 9 1. 
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velocity U ,  no matter how small but greater than zero, upon the prevailing 
Couette-type flow would result in infinite suction at sufficiently large distances 
downstream from the leading edge. Clearly, before this can be accepted, it must 
be shown that this behaviour is compatible with the flow external to the 
boundary layer and with the flow below the plate since the induced pressure, if 
it  exists, must be due to the interaction between the boundary layer and the 
external flow. Such a large negative pressure must necessarily affect the rest of 
the outer flow and it is important to ascertain that the upstream kinematical and 
dynamical boundary conditions particularly are not violated. 

In  lieu of these investigations, Ting examined, on an ad hoc basis, the effect 
on the boundary layer of an assumed pressure gradient of the form 

This pressure gradient is thus a primary effect and acts on the boundary layer as 
an ‘applied’ pressure gradient in the ordinary sense of boundary-layer theory. 
The only difference here is that p is unknown and must be determined in the 
course of the analysis. t When interpreted in this sense, the solution given by Ting 
is just one member of an infinity of possible solutions. 

This ad hoc solution does not mitigate its usefulness, however, since any 
solution a t  this early stage would be of value in providing some insight into the 
complex features of the interaction phenomenon. From this standpoint we felt 
justified in presenting another ad hoc solution, based essentially on the Prandtl- 
Blasius assumptions, that is valid in the region downstream of (1.3). In  particular, 
we shall first present an asymptotic solution for large vorticity numbers; then an 
approximate solution for arbitrary vorticity numbers will be given that bridges 
the gap between the solution of Glauert for small vorticity numbers and the 
present asymptotic solution. 

2. Formulation of the problem 

In  order to appreciate the inherent difficulties of the viscous case, we shall give an 
extended description of the inviscid case. The inviscid flow past the plate is 

u, = u + w y ,  u, = 0, p ,  = P .  (2.1 a, b, c) given by 

The corresponding stream function Y, is given by 

and the streamline pattern is shown in figure 1. 
It is seen that, with the exception of the singular streamline Ym = - U2/2w 

where the velocity vanishes, there are two branches corresponding to any given 
streamline Y, = const. as given by the relation 

A. The inviscid flow past the plate 

Ym = Uy+&Jy2, (2.2) 

(2.3) 

t It should be emphasized that, while the gradient of pressure appears in the governing 
equation for the boundary layer, the pressure itself is dynamically related to the velocity 
through Bernoulli’s equation and hence to the asymptotic boundary condition for the 
velocity at  the outer edge of the boundary layer. 



456 Richard M .  Mark 

In  particular, for YP, = 0, the upper branch is on y = 0 and the lower branch on 
y = - 2 Ulw. The magnitude of the velocity is constant, but opposite in direction, 
along the two branches of any given streamline. 

As may be seen from figure 1, part of the flow below the plate is in the direction 
of the positive x-axis and part of it is in the opposite direction. This is one apparent 
reason for the difficulty in posing a valid viscous flow model for the region below 
the plate. 

Ym = 8 U2jO ------ 

Y, = 0 
- - - - - - c x  

Ym =-a u21w --------- 

Y, = o  ---------- 

FIGURE 1. Streamline pattern for the undisturbed flow. 

B. Bernoulli’s equation for a flow with constant vorticity 

It will be expedient to derive the appropriate Bernoulli equation that is appli- 
cable to a region where the vorticity is constant everywhere in the flow (or where 
viscous diffusion is negligible). The Navier-Stokes equations for the steady flow 
of an incompressible viscous fluid are 

v . q  = 0, 
q x 8 = -VH +vV x 8, 

( 2 . 4 ~ )  

(2.4b) 

where 8 is the vorticity vector defined by 8 = - V x q, q is the velocity vector 
with magnitude q = (u2 +v2)t ,  and H = p / p  + iq2 is the total head. All other 
quantities are defined as in 5 1. For two-dimensional flow, ( 2 . 4 ~ )  is satisfied by 
q = VY x k, where k is the unit vector normal to the (x, y)-plane in a right- 
handed system of axes. Hence, by setting 8 = wk, (2.4h) reduces to 

V ( H  - OJY) = 0,  

H - w Y  = const. 
which gives upon integration 

(2.5) shows that in a flow where the vorticity is everywhere constant, the quantity 
(11 - wY) is a universal constant in the flow field. Also, it  expresses explicitly 
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that the total head is constant for any given streamline, but varies from stream- 
line to streamline in a rotational flow field. (A relation similar to (2.5) is given in 
Lamb (1932) for bodies moving in a fluid previously endowed with uniform 
vorticity.) If H = H,, = const. on Y = 0, then the required Bernoulli form is 

$(u2++’) +p/p = H,+wY. (2.6) 

C. The governing equations and boundary conditions for the flow in the 
boundary layer 

When a semi-infinite Aat plate is immersed in a Couette-type flow (u, = o y ,  v, = 0 
andp, = P) of a viscous fluid, there is no diffusion of vorticity from the plate, and, 
hence, there is no boundary layer formed on either side of the plate. This picture 
is changed when a uniform flow is superposed upon the given flow since vorticity 
is necessarily diffusing from the plate and convected downstream above the plate 
and in an unknown manner below the plate. Thus the formulation of a boundary 
layer is physically plausible for the top of the plate, but not for the bottom. We 
shall henceforth restrict our considerations to the boundary-layer flow above the 
plate. 

We now assume that the thickness of the boundary layer is very small compared 
to the distance from the leading edge, so that the outer flow streamlines remain 
nearly parallel to the plate far downstream. The effect of this thin layer upon the 
external pressure field is then assumed to be a secondary effect (with the exception 
of the region near the leading edge). Thus, to the first approximation, the Navier- 
Stokes equations (2.4) reduce to the Prandtl-Blasius boundary-layer equations 
for a semi-infinite flat plate. 

au av -+- = 0,  (2.7a) 
ax ay 

( 2 . 7 b )  

The asymptotic boundary condition for the velocity a t  the outer edge of the 
boundary layer that is consistent with this approximate system of equations may 
be derived from (2.6) as follows. We assume that the upstream flow conditions 
are also undisturbed by the presence of the boundary layer,t so that, by virtue of 
(2.1) and ( 2 . 2 ) ,  H, = ( U 2 / 2 )  + (P/p).  Now, according to the above assumptions, we 
set p = P and neglect v2 in comparison to u2 in (2.6) to obtain the following 
asymptotic condition a t  the outer edge of the boundary layer: j: 

u2 --f U 2  + 2 w Y  as y + 00. ( 2 . 8 ~ )  

This condition and the no-slip conditions a t  the wall 

u=O, v = O  a t  y = O  ( M b ,  c )  

-r More precisely, we are assuming here that any flow disturbance due to  the presence 
of the boundary layer decays at least as rapidly as some negative power of the radial 
distance from the leading edge. 

$ In  order to emphasize the asymptotic nature of this condition, the mathematical 
notation of y + co has been adopted here although it is implied that y is of the order of 
the boundary-layer thickness. 
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complete the mathematical formulation of the present boundary-layer problem. 
This system will be regarded as a valid first approximation for arbitrary vorticity 
numbers; the truth of this depends, of course, upon the demonstration of the 
uniform validity of successive approximations. In  the following we confine 
ourselves to the first approximation. 

3. Asymptotic solution for large vorticity numbers 
Since the stream function appears in the boundary condition (2.8a),  it will be 

more convenient to use the von Mises co-ordinates (X, Y) instead of (x, y). They 
are related by the transformations 

x = x, dy = dY/u. ( 3 . l a ,  b) 

In  terms of these new co-ordinates, (2.7) assume the usual form 

(3 .2 )  

The associated boundary conditions are 

u = 0 at  Y = 0 and us+ 2 w Y +  U2 as Y +a. ( 3 . 3 a ) b )  

We now assume that, for sufficiently large values of the vorticity number 6 ,  the 
flow described by this approximate system does not deviate appreciably from the 
Couette-type flow [u, = oy or u, = ,/(2wY)]. We thus look for an asymptotic 
solution of the form 

u = ,/(2wY) [1 +f ( X ,  w1, (3 .4 )  

where I f  I 4 1 for large 6. The first two terms of this asymptotic solution can be 
readily obtained by substituting ( 3 . 4 )  into ( 3 . 2 )  and neglecting terms of order f 2; 

this gives 
aF a 2 F  
- ax = v4(2wY)--, aY2 (3 .5 )  

where P = Yf. This equation admits a similar solution of the form F = F ( T ) ,  
where 7 = (2/9wv2x2)*Y and F must satisfy 

F"+&F' = 0 
and the boundary conditions 

( 3 . 6 ~ ~ )  

F = 0 at 7 = 0 and F +  U 2 / 4 0  as ~ + m .  ( 3 . 6 b , c )  

The solution is easily obtained in the form 

where I? denotes the gamma function. 
At the outer edge of the boundary layer (i.e. where viscous diffusion is exponen- 

tially small as may be verified by using (3 .7 ) ) ,  7 = O ( l ) ,  so that Y = O(ov2x2)*. 
Since F = O(U2/o) ,  we see that f = O(g-$) and hence the neglected term f is of 
order 64, which justifies the asymptotic nature of the solution. 
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The local skin friction 7, is given by 

450 

(3.8) 

so that, by using (3.4) and (3.7), we have (p is the viscosity) 

4 $ 3  = 6 + 0-256E-4 + O(t-8) .  (3.9) 

We may define a displacement thickness 6* as follows. The substitution of 
(2.8a) into (3 . lb)  gives, by a single quadrature, 

1 
y = B+-(U2+2wY)*. (3.10) 

The constant of integration 3 may be determined such that y = 6" on Y = 0; 
this gives B = 6"- Ulw, so that (3.10) may be written as 

Y = U(y-S*)+*w(y-6*)2, (3.11a) 

= U+w(y-S*). (3.11b) 

These results are consistent with Glauert's deduction that the streamlines at  the 
outer edge of the boundary layer are displaced outward from the plate by an 
amount S*-just as in the case without external vorticity in the mainstream. 
By substituting (3.4) into (3.11b) and solving for a*, we have asymptotically 

w 

or as u = (U2+ 2 w Y ) i  

(3.12) 
U 

S* = - [ 1 + 0(5-"], 
w 

so that the displacement thickness tends to a constant as 6 -+ 00. 

4. Approximate calculation for arbitrary vorticity numbers 

procedure, a simple theory can be evolved for arbitrary vorticity numbers. 
We now show that, by the application of the approximate Karman-integral 

By performing the usual operations to (2.7), with the aid of (2.8), we have 

where we have taken y = 6(x)  as the outer edge of the boundary layer and 

as the approximate boundary condition for the tangential velocity at  y = 6. 

conjunction with (4.1). We thus have 

ug = ( u2 + 2 w Y  6)4 (4.21 

We shall likewise find it convenient to use the von Mises transformation in 

where S is related to Y, by 
S = ~ o y r d d Y j u .  

We now approximate u across the boundary 

(4.4) 

layer by the expression 

(4.5) 
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This assumed form satisfies the conditions u = 0 at YP = 0 and u = ub at Y' = yps. 
Hence, by using (4.2) and ( 4 4 ,  (4.3) reduces by a straightforward calculation to 

dY 3v Y!,(U2+2wYg)-B--S ax = -, z 

which may be easily integrated to give A = wYpb/U2 in terms of the vorticity 

where the constant of integration has been evaluated by taking Y b  = 0 for x 5 0 
(i.e. by assuming that the boundary layer has zero thickness at  the leading edge). 
(4.7) represents our main approximate resul t f rom it we can calculate S, S*, the 
normal component of velocity vb at the outer edge of the boundary layer, and 7, 

as a function of 5. 

number c as (A- 1) (2A+ I)$ = gcz, (4.7) 

By expanding (4.7) for small and large [, we obtain 
J35+t?+O(c3) (5 < 1)7 (4.8~) 

(4.8b) A = {  &9"+ + 8 + O(5-Q) (5 9 1). 

By virtue of (4.4) and (4.5), 6 is given in non-dimensional form by 

which may be expanded, with the aid of (4.8)) to give 

946-4 + 0(c3) (c  9 1). 

D = {  243-4e+O(P2) ( c  < 1)) 

By virtue of (4.2)) (4.9) and (3.11 b), S* is given in non-dimensional form by 
D* S*( U/VX)& = c-l(1- (1 +an)-*), (4.10) 

which may be expanded, with the aid of (4.8), to give 
J 3 - 4 5 + 0 ( P )  (5 4 1))  (4.11 a) 

<-l- 9--*<-8 + 0(g3) (< 9 1). (4.11 b) 
D* = { 

(4.11 b) also may be written as 
U 6" = 0 [l - 9-tg-% + O(Lg4)] , 

which agrees in form with (3.12). 
From ( 2 . 7 ~ )  we have 

so that, by virtue of (4.2), (4.6) and (4.9), we have 

which may be expanded, with the aid of (4.8), to give 

1+./3-25+0(52) ( c  4 I), 
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Finally, by virtue of (4.2), (4.5) and (3.8), the non-dimensional skin friction is 
given by 

which may be expanded, with the aid of (4.8), to give 
0*289+ 0.833[+ O(g2) 

t+ 0*231@ + O(t-8) 
(c  < l), ( )”{ 

(c  9 1). 
7, - 

PP u3 
40 

30 

n 20 

1 .o 

0 

E 
FIGURE 2. Variations of D and vz with vorticity number [. 

Glauert’s result for the skin friction for f < 1 is 

7, - = 0.332 + 0*795< + O(f2), 
(,,zU3Y 

so that our approximate results for c < 1 and 6 1 (by comparison with (3.9)) 
are reasonably accurate. 

The variations of D and v: for arbitrary < are shown in figure 2. It is seen that 
both quantities decrease steadily with increasing ( from their values at f = 0 so 
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that the initial assumptions that the boundary layer is thin and the outer flow 
streamlines remain nearly parallel to the plate are justified a posteriori for 
arbitrary [. 

5. Discussion 
The present solutions are based on the crucial assumption that the presence of 

a thin boundary layer does not affect the external pressure field a t  sufficiently 
large distances from the leading edge to the first approximation and for arbitrary 
vorticity numbers. If it  can be rigorously ascertained that the constant-pressure 
Couette-type flow is the proper limiting solution as ( + 00, then the present 
theory has some measure of truth. However, the result of Ting for the pressure 
shows that the limiting solution may not be unique since the convergence of p is 
not uniform as ( + C Q ; ~  hence the actual state-of-affairs remains in doubt. 

It has been suggested that a logical way of resolving this conflict is to determine 
whether the respective asymptotic solutions for large ( can be matched to a 
suitable outer flow that does not exclude the flow below the plate.$ This is 
reasonable because we are dealing with a problem of interaction where the 
conditions of one region and those of the adjacent region are interdependent. 
However, this would be a formidable task a t  present; and since the matching 
procedure is not completely understood for the simpler case of flow without 
external vorticity, a satisfactory resolution is not likely in the foreseeable future. 
Nevertheless, we are confident that the present solutions, along with all the 
previous solutions, will aid immeasurably in completing our understanding of the 
effect of external vorticity on the flow field when viewed collectively with future 
work on the problem. 

While the views expressed herein are primarily his own (and his sole re- 
sponsibility), the author is nevertheless grateful for the benefit of discussions 
with 0. R. Burggraf, W. Chester, R. J. Dickson Jr. and M. D. Van Dyke. He is 
also grateful to W. D. Hayes and to the referees for helpful criticisms and valuable 
comments on the manuscript. 
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